Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conley Index at Infinity (1103.5335v2)

Published 28 Mar 2011 in math.DS

Abstract: The aim of this paper is to explore the possibilities of Conley index techniques in the study of heteroclinic connections between finite and infinite invariant sets. For this, we remind the reader of the Poincar\'e compactification: this transformation allows to project a $n$-dimensional vector space $X$ on the $n$-dimensional unit hemisphere of $X\times \mathbb{R}$ and infinity on its $(n-1)$-dimensional equator called the sphere at infinity. Under normalizability condition, vector fields on $X$ transform into vector fields on the Poincar\'e hemisphere whose associated flows let the equator invariant. The dynamics on the equator reflects the dynamics at infinity, but is now finite and may be studied by Conley index techniques. Furthermore, we observe that some non-isolated behavior may occur around the equator, and introduce the concept of invariant sets at infinity of isolated invariant dynamical complement. Through the construction of an extended phase space together which an extended flow, we are able to adapt the Conley index techniques and prove the existence of connections to such non-isolated invariant sets.

Summary

We haven't generated a summary for this paper yet.