Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the rate of convergence in the martingale central limit theorem (1103.5050v2)

Published 25 Mar 2011 in math.PR, math.ST, and stat.TH

Abstract: Consider a discrete-time martingale, and let $V2$ be its normalized quadratic variation. As $V2$ approaches 1, and provided that some Lindeberg condition is satisfied, the distribution of the rescaled martingale approaches the Gaussian distribution. For any $p\geq 1$, (Ann. Probab. 16 (1988) 275-299) gave a bound on the rate of convergence in this central limit theorem that is the sum of two terms, say $A_p+B_p$, where up to a constant, $A_p={|V2-1|}_p{p/(2p+1)}$. Here we discuss the optimality of this term, focusing on the restricted class of martingales with bounded increments. In this context, (Ann. Probab. 10 (1982) 672-688) sketched a strategy to prove optimality for $p=1$. Here we extend this strategy to any $p\geq 1$, thereby justifying the optimality of the term $A_p$. As a necessary step, we also provide a new bound on the rate of convergence in the central limit theorem for martingales with bounded increments that improves on the term $B_p$, generalizing another result of (Ann. Probab. 10 (1982) 672-688).

Summary

We haven't generated a summary for this paper yet.