Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Non-Bayesian Social Learning (1103.4395v1)

Published 22 Mar 2011 in cs.SI and physics.soc-ph

Abstract: We study a model of information aggregation and social learning recently proposed by Jadbabaie, Sandroni, and Tahbaz-Salehi, in which individual agents try to learn a correct state of the world by iteratively updating their beliefs using private observations and beliefs of their neighbors. No individual agent's private signal might be informative enough to reveal the unknown state. As a result, agents share their beliefs with others in their social neighborhood to learn from each other. At every time step each agent receives a private signal, and computes a Bayesian posterior as an intermediate belief. The intermediate belief is then averaged with the belief of neighbors to form the individual's belief at next time step. We find a set of minimal sufficient conditions under which the agents will learn the unknown state and reach consensus on their beliefs without any assumption on the private signal structure. The key enabler is a result that shows that using this update, agents will eventually forecast the indefinite future correctly.

Summary

We haven't generated a summary for this paper yet.