2000 character limit reached
Lattices, graphs, and Conway mutation (1103.0487v1)
Published 2 Mar 2011 in math.GT, math.CO, and math.NT
Abstract: The d-invariant of an integral, positive definite lattice L records the minimal norm of a characteristic covector in each equivalence class mod 2L. We prove that the 2-isomorphism type of a connected graph is determined by the d-invariant of its lattice of integral cuts (or flows). As an application, we prove that a reduced, alternating link diagram is determined up to mutation by the Heegaard Floer homology of the link's branched double-cover. Thus, alternating links with homeomorphic branched double-covers are mutants.