Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The calculus of differentials for the weak Stratonovich integral (1103.0341v3)

Published 2 Mar 2011 in math.PR

Abstract: The weak Stratonovich integral is defined as the limit, in law, of Stratonovich-type symmetric Riemann sums. We derive an explicit expression for the weak Stratonovich integral of $f(B)$ with respect to $g(B)$, where $B$ is a fractional Brownian motion with Hurst parameter 1/6, and $f$ and $g$ are smooth functions. We use this expression to derive an It^o-type formula for this integral. As in the case where $g$ is the identity, the It^o-type formula has a correction term which is a classical It^o integral, and which is related to the so-called signed cubic variation of $g(B)$. Finally, we derive a surprising formula for calculating with differentials. We show that if $dM = X dN$, then $Z dM$ can be written as $ZX dN$ minus a stochastic correction term which is again related to the signed cubic variation.

Summary

We haven't generated a summary for this paper yet.