Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A covariance regression model (1102.5721v1)

Published 28 Feb 2011 in stat.ME

Abstract: Classical regression analysis relates the expectation of a response variable to a linear combination of explanatory variables. In this article, we propose a covariance regression model that parameterizes the covariance matrix of a multivariate response vector as a parsimonious quadratic function of explanatory variables. The approach is analogous to the mean regression model, and is similar to a factor analysis model in which the factor loadings depend on the explanatory variables. Using a random-effects representation, parameter estimation for the model is straightforward using either an EM-algorithm or an MCMC approximation via Gibbs sampling. The proposed methodology provides a simple but flexible representation of heteroscedasticity across the levels of an explanatory variable, improves estimation of the mean function and gives better calibrated prediction regions when compared to a homoscedastic model.

Summary

We haven't generated a summary for this paper yet.