Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantitative bounds for Markov chain convergence: Wasserstein and total variation distances (1102.5245v1)

Published 25 Feb 2011 in math.ST and stat.TH

Abstract: We present a framework for obtaining explicit bounds on the rate of convergence to equilibrium of a Markov chain on a general state space, with respect to both total variation and Wasserstein distances. For Wasserstein bounds, our main tool is Steinsaltz's convergence theorem for locally contractive random dynamical systems. We describe practical methods for finding Steinsaltz's "drift functions" that prove local contractivity. We then use the idea of "one-shot coupling" to derive criteria that give bounds for total variation distances in terms of Wasserstein distances. Our methods are applied to two examples: a two-component Gibbs sampler for the Normal distribution and a random logistic dynamical system.

Summary

We haven't generated a summary for this paper yet.