Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quantitative bounds for Markov chain convergence: Wasserstein and total variation distances

Published 25 Feb 2011 in math.ST and stat.TH | (1102.5245v1)

Abstract: We present a framework for obtaining explicit bounds on the rate of convergence to equilibrium of a Markov chain on a general state space, with respect to both total variation and Wasserstein distances. For Wasserstein bounds, our main tool is Steinsaltz's convergence theorem for locally contractive random dynamical systems. We describe practical methods for finding Steinsaltz's "drift functions" that prove local contractivity. We then use the idea of "one-shot coupling" to derive criteria that give bounds for total variation distances in terms of Wasserstein distances. Our methods are applied to two examples: a two-component Gibbs sampler for the Normal distribution and a random logistic dynamical system.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.