Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Categorification of Quantum Generalized Kac-Moody Algebras and Crystal Bases (1102.5165v3)

Published 25 Feb 2011 in math.RT

Abstract: We construct and investigate the structure of the Khovanov-Lauda-Rouquier algebras $R$ and their cyclotomic quotients $R\lambda$ which give a categrification of quantum generalized Kac-Moody algebras. Let $U_\A(\g)$ be the integral form of the quantum generalized Kac-Moody algebra associated with a Borcherds-Cartan matrix $A=(a_{ij}){i,j \in I}$ and let $K_0(R)$ be the Grothedieck group of finitely generated projective graded $R$-modules. We prove that there exists an injective algebra homomorphism $\Phi: U\A-(\g) \to K_0(R)$ and that $\Phi$ is an isomorphism if $a_{ii}\ne 0$ for all $i\in I$. Let $B(\infty)$ and $B(\lambda)$ be the crystals of $U_q-(\g)$ and $V(\lambda)$, respectively, where $V(\lambda)$ is the irreducible highest weight $U_q(\g)$-module. We denote by $\mathfrak{B}(\infty)$ and $\mathfrak{B}(\lambda)$ the isomorphism classes of irreducible graded modules over $R$ and $R\lambda$, respectively. If $a_{ii}\ne 0$ for all $i\in I$, we define the $U_q(\g)$-crystal structures on $\mathfrak{B}(\infty)$ and $\mathfrak{B}(\lambda)$, and show that there exist crystal isomorphisms $\mathfrak{B}(\infty) \simeq B(\infty)$ and $\mathfrak{B}(\lambda) \simeq B(\lambda)$. One of the key ingredients of our approach is the perfect basis theory for generalized Kac-Moody algebras.

Summary

We haven't generated a summary for this paper yet.