Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Upper Bounds for Maximally Greedy Binary Search Trees (1102.4884v3)

Published 24 Feb 2011 in cs.DS

Abstract: At SODA 2009, Demaine et al. presented a novel connection between binary search trees (BSTs) and subsets of points on the plane. This connection was independently discovered by Derryberry et al. As part of their results, Demaine et al. considered GreedyFuture, an offline BST algorithm that greedily rearranges the search path to minimize the cost of future searches. They showed that GreedyFuture is actually an online algorithm in their geometric view, and that there is a way to turn GreedyFuture into an online BST algorithm with only a constant factor increase in total search cost. Demaine et al. conjectured this algorithm was dynamically optimal, but no upper bounds were given in their paper. We prove the first non-trivial upper bounds for the cost of search operations using GreedyFuture including giving an access lemma similar to that found in Sleator and Tarjan's classic paper on splay trees.

Citations (29)

Summary

We haven't generated a summary for this paper yet.