Papers
Topics
Authors
Recent
2000 character limit reached

The convex Positivstellensatz in a free algebra

Published 23 Feb 2011 in math.RA, math.FA, and math.OA | (1102.4859v3)

Abstract: Given a monic linear pencil L in g variables let D_L be its positivity domain, i.e., the set of all g-tuples X of symmetric matrices of all sizes making L(X) positive semidefinite. Because L is a monic linear pencil, D_L is convex with interior, and conversely it is known that convex bounded noncommutative semialgebraic sets with interior are all of the form D_L. The main result of this paper establishes a perfect noncommutative Nichtnegativstellensatz on a convex semialgebraic set. Namely, a noncommutative polynomial p is positive semidefinite on D_L if and only if it has a weighted sum of squares representation with optimal degree bounds: p = s* s + \sum_j f_j* L f_j, where s, f_j are vectors of noncommutative polynomials of degree no greater than 1/2 deg(p). This noncommutative result contrasts sharply with the commutative setting, where there is no control on the degrees of s, f_j and assuming only p nonnegative, as opposed to p strictly positive, yields a clean Positivstellensatz so seldom that such cases are noteworthy.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.