2000 character limit reached
On the Core of a Unicyclic Graph (1102.4727v1)
Published 23 Feb 2011 in cs.DM and math.CO
Abstract: A set S is independent in a graph G if no two vertices from S are adjacent. By core(G) we mean the intersection of all maximum independent sets. The independence number alpha(G) is the cardinality of a maximum independent set, while mu(G) is the size of a maximum matching in G. A connected graph having only one cycle, say C, is a unicyclic graph. In this paper we prove that if G is a unicyclic graph of order n and n-1 = alpha(G) + mu(G), then core(G) coincides with the union of cores of all trees in G-C.