2000 character limit reached
Toric Degenerations of Fano Threefolds Giving Weak Landau-Ginzburg Models
Published 23 Feb 2011 in math.AG | (1102.4664v3)
Abstract: We show that every rank one smooth Fano threefold has a weak Landau-Ginzburg model coming from a toric degeneration. The fibers of these Landau-Ginzburg models can be compactified to K3 surfaces with Picard lattice of rank 19. We also show that any smooth Fano variety of arbitrary dimension which is a complete intersection of Cartier divisors in weighted projective space has a very weak Landau-Ginzburg model coming from a toric degeneration.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.