Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dual-Tree Fast Gauss Transforms (1102.2878v1)

Published 14 Feb 2011 in stat.CO, cs.DS, and stat.ML

Abstract: Kernel density estimation (KDE) is a popular statistical technique for estimating the underlying density distribution with minimal assumptions. Although they can be shown to achieve asymptotic estimation optimality for any input distribution, cross-validating for an optimal parameter requires significant computation dominated by kernel summations. In this paper we present an improvement to the dual-tree algorithm, the first practical kernel summation algorithm for general dimension. Our extension is based on the series-expansion for the Gaussian kernel used by fast Gauss transform. First, we derive two additional analytical machinery for extending the original algorithm to utilize a hierarchical data structure, demonstrating the first truly hierarchical fast Gauss transform. Second, we show how to integrate the series-expansion approximation within the dual-tree approach to compute kernel summations with a user-controllable relative error bound. We evaluate our algorithm on real-world datasets in the context of optimal bandwidth selection in kernel density estimation. Our results demonstrate that our new algorithm is the only one that guarantees a hard relative error bound and offers fast performance across a wide range of bandwidths evaluated in cross validation procedures.

Citations (77)

Summary

We haven't generated a summary for this paper yet.