Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Embedding a pair of graphs in a surface, and the width of 4-dimensional prismatoids (1102.2645v2)

Published 13 Feb 2011 in math.CO and cs.CG

Abstract: A prismatoid is a polytope with all its vertices contained in two parallel facets, called its bases. Its width is the number of steps needed to go from one base to the other in the dual graph. The author recently showed in arXiv:1006.2814 that the existence of counter-examples to the Hirsch conjecture is equivalent to that of $d$-prismatoids of width larger than $d$, and constructed such prismatoids in dimension five. Here we show that the same is impossible in dimension four. This is proved by looking at the pair of graph embeddings on a 2-sphere that arise from the normal fans of the two bases of $Q$.

Citations (12)

Summary

We haven't generated a summary for this paper yet.