Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Specht modules with abelian vertices (1102.2484v2)

Published 12 Feb 2011 in math.RT

Abstract: In this article, we consider indecomposable Specht modules with abelian vertices. We show that the corresponding partitions are necessarily $p2$-cores where $p$ is the characteristic of the underlying field. Furthermore, in the case of $p\geq 3$, or $p=2$ and $\mu$ is 2-regular, we show that the complexity of the Specht module $S\mu$ is precisely the $p$-weight of the partition $\mu$. In the latter case, we classify Specht modules with abelian vertices. For some applications of the above results, we extend a result of M. Wildon and compute the vertices of the Specht module $S{(pp)}$ for $p\geq 3$.

Summary

We haven't generated a summary for this paper yet.