Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite separating sets and quasi-affine quotients (1102.2132v2)

Published 10 Feb 2011 in math.AC and math.AG

Abstract: Nagata's famous counterexample to Hilbert's fourteenth problem shows that the ring of invariants of an algebraic group action on an affine algebraic variety is not always finitely generated. In some sense, however, invariant rings are not far from affine. Indeed, invariant rings are always quasi-affine, and there always exist finite separating sets. In this paper, we give a new method for finding a quasi-affine variety on which the ring of regular functions is equal to a given invariant ring, and we give a criterion to recognize separating algebras. The method and criterion are used on some known examples and in a new construction.

Summary

We haven't generated a summary for this paper yet.