Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deformed Statistics Kullback-Leibler Divergence Minimization within a Scaled Bregman Framework (1102.1025v3)

Published 4 Feb 2011 in cond-mat.stat-mech, cs.IT, math-ph, math.IT, and math.MP

Abstract: The generalized Kullback-Leibler divergence (K-Ld) in Tsallis statistics [constrained by the additive duality of generalized statistics (dual generalized K-Ld)] is here reconciled with the theory of Bregman divergences for expectations defined by normal averages, within a measure-theoretic framework. Specifically, it is demonstrated that the dual generalized K-Ld is a scaled Bregman divergence. The Pythagorean theorem is derived from the minimum discrimination information-principle using the dual generalized K-Ld as the measure of uncertainty, with constraints defined by normal averages. The minimization of the dual generalized K-Ld, with normal averages constraints, is shown to exhibit distinctly unique features.

Citations (12)

Summary

We haven't generated a summary for this paper yet.