Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Applying causality principles to the axiomatization of probabilistic cellular automata (1102.0860v2)

Published 4 Feb 2011 in cs.DM, cs.FL, math-ph, math.MP, and quant-ph

Abstract: Cellular automata (CA) consist of an array of identical cells, each of which may take one of a finite number of possible states. The entire array evolves in discrete time steps by iterating a global evolution G. Further, this global evolution G is required to be shift-invariant (it acts the same everywhere) and causal (information cannot be transmitted faster than some fixed number of cells per time step). At least in the classical, reversible and quantum cases, these two top-down axiomatic conditions are sufficient to entail more bottom-up, operational descriptions of G. We investigate whether the same is true in the probabilistic case. Keywords: Characterization, noise, Markov process, stochastic Einstein locality, screening-off, common cause principle, non-signalling, Multi-party non-local box.

Citations (15)

Summary

We haven't generated a summary for this paper yet.