Two dimensional dynamical systems which admit Lie and Noether symmetries (1101.5771v2)
Abstract: We prove two theorems which relate the Lie point symmetries and the Noether symmetries of a dynamical system moving in a Riemannian space with the special projective group and the homothetic group of the space respectively. The theorems are applied to classify the two dimensional Newtonian dynamical systems, which admit a Lie point/Noether symmetry. Two cases are considered, the non-conservative and the conservative forces. The use of the results is demonstrated for the Kepler - Ermakov system, which in general is non-conservative and for potentials similar to the H`enon Heiles potential. Finally it is shown that in a FRW background with no matter present, the only scalar cosmological model which is integrable is the one for which 3-space is flat and the potential function of the scalar field is exponential. It is important to note that in all applications the generators of the symmetry vectors are found by reading the appropriate entry in the relevant tables.