Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the number of subsequences with a given sum in a finite abelian group

Published 24 Jan 2011 in math.CO and math.NT | (1101.4492v1)

Abstract: Suppose $G$ is a finite abelian group and $S$ is a sequence of elements in $G$. For any element $g$ of $G$, let $N_g(S)$ denote the number of subsequences of $S$ with sum $g$. The purpose of this paper is to investigate the lower bound for $N_g(S)$. In particular, we prove that either $N_g(S)=0$ or $N_g(S) \ge 2{|S|-D(G)+1}$, where $D(G)$ is the smallest positive integer $\ell$ such that every sequence over $G$ of length at least $\ell$ has a nonempty zero-sum subsequence. We also characterize the structures of the extremal sequences for which the equality holds for some groups.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.