Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reproducing Kernel Banach Spaces with the l1 Norm II: Error Analysis for Regularized Least Square Regression (1101.4439v2)

Published 24 Jan 2011 in stat.ML, cs.LG, and math.FA

Abstract: A typical approach in estimating the learning rate of a regularized learning scheme is to bound the approximation error by the sum of the sampling error, the hypothesis error and the regularization error. Using a reproducing kernel space that satisfies the linear representer theorem brings the advantage of discarding the hypothesis error from the sum automatically. Following this direction, we illustrate how reproducing kernel Banach spaces with the l1 norm can be applied to improve the learning rate estimate of l1-regularization in machine learning.

Citations (38)

Summary

We haven't generated a summary for this paper yet.