Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Throughput-optimal Scheduling in Multi-hop Wireless Networks without Per-flow Information (1101.4211v4)

Published 21 Jan 2011 in cs.NI, cs.IT, cs.PF, and math.IT

Abstract: In this paper, we consider the problem of link scheduling in multi-hop wireless networks under general interference constraints. Our goal is to design scheduling schemes that do not use per-flow or per-destination information, maintain a single data queue for each link, and exploit only local information, while guaranteeing throughput optimality. Although the celebrated back-pressure algorithm maximizes throughput, it requires per-flow or per-destination information. It is usually difficult to obtain and maintain this type of information, especially in large networks, where there are numerous flows. Also, the back-pressure algorithm maintains a complex data structure at each node, keeps exchanging queue length information among neighboring nodes, and commonly results in poor delay performance. In this paper, we propose scheduling schemes that can circumvent these drawbacks and guarantee throughput optimality. These schemes use either the readily available hop-count information or only the local information for each link. We rigorously analyze the performance of the proposed schemes using fluid limit techniques via an inductive argument and show that they are throughput-optimal. We also conduct simulations to validate our theoretical results in various settings, and show that the proposed schemes can substantially improve the delay performance in most scenarios.

Citations (48)

Summary

We haven't generated a summary for this paper yet.