Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shrinkage estimation with a matrix loss function (1101.3412v1)

Published 18 Jan 2011 in math.ST and stat.TH

Abstract: Consider estimating the n by p matrix of means of an n by p matrix of independent normally distributed observations with constant variance, where the performance of an estimator is judged using a p by p matrix quadratic error loss function. A matrix version of the James-Stein estimator is proposed, depending on a tuning constant. It is shown to dominate the usual maximum likelihood estimator for some choices of of the tuning constant when n is greater than or equal to 3. This result also extends to other shrinkage estimators and settings.

Summary

We haven't generated a summary for this paper yet.