Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reduction of continuous symmetries of chaotic flows by the method of slices (1101.3037v4)

Published 16 Jan 2011 in nlin.CD, math-ph, math.MP, and physics.flu-dyn

Abstract: We study continuous symmetry reduction of dynamical systems by the method of slices (method of moving frames) and show that a slice' defined by minimizing the distance to a single generictemplate' intersects the group orbit of every point in the full state space. Global symmetry reduction by a single slice is, however, not natural for a chaotic / turbulent flow; it is better to cover the reduced state space by a set of slices, one for each dynamically prominent unstable pattern. Judiciously chosen, such tessellation eliminates the singular traversals of the inflection hyperplane that comes along with each slice, an artifact of using the template's local group linearization globally. We compute the jump in the reduced state space induced by crossing the inflection hyperplane. As an illustration of the method, we reduce the SO(2) symmetry of the complex Lorenz equations.

Summary

We haven't generated a summary for this paper yet.