Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rainbow connection of graphs with diameter 2 (1101.2765v2)

Published 14 Jan 2011 in math.CO

Abstract: A path in an edge-colored graph $G$, where adjacent edges may have the same color, is called a rainbow path if no two edges of the path are colored the same. The rainbow connection number $rc(G)$ of $G$ is the minimum integer $i$ for which there exists an $i$-edge-coloring of $G$ such that every two distinct vertices of $G$ are connected by a rainbow path. It is known that for a graph $G$ with diameter 2, to determine $rc(G)$ is NP-hard. So, it is interesting to know the best upper bound of $rc(G)$ for such a graph $G$. In this paper, we show that $rc(G)\leq 5$ if $G$ is a bridgeless graph with diameter 2, and that $rc(G)\leq k+2$ if $G$ is a connected graph of diameter 2 with $k$ bridges, where $k\geq 1$.

Summary

We haven't generated a summary for this paper yet.