Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unitary representations of oligomorphic groups (1101.2194v2)

Published 11 Jan 2011 in math.GR, math.LO, and math.RT

Abstract: We obtain a complete classification of the continuous unitary representations of oligomorphic permutation groups (those include the infinite permutation group $S_\infty$, the automorphism group of the countable dense linear order, the homeomorphism group of the Cantor space, etc.). Our main result is that all irreducible representations of such groups are obtained by induction from representations of finite quotients of open subgroups and moreover, every representation is a sum of irreducibles. As an application, we prove that many oligomorphic groups have property (T). We also show that the Gelfand--Raikov theorem holds for topological subgroups of $S_\infty$: for all such groups, continuous irreducible representations separate points in the group.

Summary

We haven't generated a summary for this paper yet.