Papers
Topics
Authors
Recent
2000 character limit reached

Unitary representations of oligomorphic groups

Published 11 Jan 2011 in math.GR, math.LO, and math.RT | (1101.2194v2)

Abstract: We obtain a complete classification of the continuous unitary representations of oligomorphic permutation groups (those include the infinite permutation group $S_\infty$, the automorphism group of the countable dense linear order, the homeomorphism group of the Cantor space, etc.). Our main result is that all irreducible representations of such groups are obtained by induction from representations of finite quotients of open subgroups and moreover, every representation is a sum of irreducibles. As an application, we prove that many oligomorphic groups have property (T). We also show that the Gelfand--Raikov theorem holds for topological subgroups of $S_\infty$: for all such groups, continuous irreducible representations separate points in the group.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.