Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Personalized Event-Based Surveillance and Alerting Support for the Assessment of Risk (1101.0654v1)

Published 4 Jan 2011 in cs.CY

Abstract: In a typical Event-Based Surveillance setting, a stream of web documents is continuously monitored for disease reporting. A structured representation of the disease reporting events is extracted from the raw text, and the events are then aggregated to produce signals, which are intended to represent early warnings against potential public health threats. To public health officials, these warnings represent an overwhelming list of "one-size-fits-all" information for risk assessment. To reduce this overload, two techniques are proposed. First, filtering signals according to the user's preferences (e.g., location, disease, symptoms, etc.) helps reduce the undesired noise. Second, re-ranking the filtered signals, according to an individual's feedback and annotation, allows a user-specific, prioritized ranking of the most relevant warnings. We introduce an approach that takes into account this two-step process of: 1) filtering and 2) re-ranking the results of reporting signals. For this, Collaborative Filtering and Personalization are common techniques used to support users in dealing with the large amount of information that they face.

Summary

We haven't generated a summary for this paper yet.