Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Segmentation of Camera Captured Business Card Images for Mobile Devices (1101.0457v1)

Published 3 Jan 2011 in cs.CV

Abstract: Due to huge deformation in the camera captured images, variety in nature of the business cards and the computational constraints of the mobile devices, design of an efficient Business Card Reader (BCR) is challenging to the researchers. Extraction of text regions and segmenting them into characters is one of such challenges. In this paper, we have presented an efficient character segmentation technique for business card images captured by a cell-phone camera, designed in our present work towards developing an efficient BCR. At first, text regions are extracted from the card images and then the skewed ones are corrected using a computationally efficient skew correction technique. At last, these skew corrected text regions are segmented into lines and characters based on horizontal and vertical histogram. Experiments show that the present technique is efficient and applicable for mobile devices, and the mean segmentation accuracy of 97.48% is achieved with 3 mega-pixel (500-600 dpi) images. It takes only 1.1 seconds for segmentation including all the preprocessing steps on a moderately powerful notebook (DualCore T2370, 1.73 GHz, 1GB RAM, 1MB L2 Cache).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ayatullah Faruk Mollah (10 papers)
  2. Subhadip Basu (34 papers)
  3. Mita Nasipuri (93 papers)
Citations (15)

Summary

We haven't generated a summary for this paper yet.