Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Growth of the Counting Function of Stanley Sequences (1101.0022v3)

Published 29 Dec 2010 in math.NT and math.CO

Abstract: Given a finite set of nonnegative integers A with no 3-term arithmetic progressions, the Stanley sequence generated by A, denoted S(A), is the infinite set created by beginning with A and then greedily including strictly larger integers which do not introduce a 3-term arithmetic progressions in S(A). Erdos et al. asked whether the counting function, S(A,x), of a Stanley sequence S(A) satisfies S(A,x)>x{1/2-\epsilon} for every \epsilon>0 and x>x_0(\epsilon,A). In this paper we answer this question in the affirmative; in fact, we prove the slightly stronger result that S(A,x)\geq (\sqrt{2}-\epsilon)\sqrt{x} for x\geq x_0(\epsilon,A).

Summary

We haven't generated a summary for this paper yet.