Papers
Topics
Authors
Recent
Search
2000 character limit reached

On Elementary Loops of Logic Programs

Published 28 Dec 2010 in cs.AI | (1012.5847v2)

Abstract: Using the notion of an elementary loop, Gebser and Schaub refined the theorem on loop formulas due to Lin and Zhao by considering loop formulas of elementary loops only. In this article, we reformulate their definition of an elementary loop, extend it to disjunctive programs, and study several properties of elementary loops, including how maximal elementary loops are related to minimal unfounded sets. The results provide useful insights into the stable model semantics in terms of elementary loops. For a nondisjunctive program, using a graph-theoretic characterization of an elementary loop, we show that the problem of recognizing an elementary loop is tractable. On the other hand, we show that the corresponding problem is {\sf coNP}-complete for a disjunctive program. Based on the notion of an elementary loop, we present the class of Head-Elementary-loop-Free (HEF) programs, which strictly generalizes the class of Head-Cycle-Free (HCF) programs due to Ben-Eliyahu and Dechter. Like an HCF program, an HEF program can be turned into an equivalent nondisjunctive program in polynomial time by shifting head atoms into the body.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.