Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating functions for the Bernstein polynomials: A unified approach to deriving identities for the Bernstein basis functions (1012.5538v1)

Published 21 Dec 2010 in math.CA

Abstract: The main aim of this paper is to provide a unified approach to deriving identities for the Bernstein polynomials using a novel generating function. We derive various functional equations and differential equations using this generating function. Using these equations, we give new proofs both for a recursive definition of the Bernstein basis functions and for derivatives of the nth degree Bernstein polynomials. We also find some new identities and properties for the Bernstein basis functions. Furthermore, we discuss analytic representations for the generalized Bernstein polynomials through the binomial or Newton distribution and Poisson distribution with mean and variance. Using this novel generating function, we also derive an identity which represents a pointwise orthogonality relation for the Bernstein basis functions. Finally, by using the mean and the variance, we generalize Szasz-Mirakjan type basis functions.

Summary

We haven't generated a summary for this paper yet.