Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Triangular decomposition of right coideal subalgebras (1012.5057v1)

Published 22 Dec 2010 in math.QA

Abstract: Let $\mathfrak g$ be a Kac-Moody algebra. We show that every homogeneous right coideal subalgebra $U$ of the multiparameter version of the quantized universal enveloping algebra $U_q(\mathfrak{g}),$ $qm\neq 1$ containing all group-like elements has a triangular decomposition $U=U-\otimes_{{\bf k}[F]} {\bf k}[H] \otimes_{{\bf k}[G]} U+$, where $U-$ and $ U+$ are right coideal subalgebras of negative and positive quantum Borel subalgebras. However if $ U_1$ and $ U_2$ are arbitrary right coideal subalgebras of respectively positive and negative quantum Borel subalgebras, then the triangular composition $ U_2\otimes_{{\bf k}[F]} {\bf k}[H]\otimes_{{\bf k}[G]} U_1$ is a right coideal but not necessary a subalgebra. Using a recent combinatorial classification of right coideal subalgebras of the quantum Borel algebra $U_q+(\mathfrak{so}_{2n+1}),$ we find a necessary condition for the triangular composition to be a right coideal subalgebra of $U_q(\mathfrak{so}{2n+1}).$ If $q$ has a finite multiplicative order $t>4,$ similar results remain valid for homogeneous right coideal subalgebras of the multiparameter version of the small Lusztig quantum groups $u_q({\frak g}),$ $u_q(\frak{so}{2n+1}).$

Summary

We haven't generated a summary for this paper yet.