2000 character limit reached
Real analytic approximations which almost preserve Lipschitz constants of functions defined on the Hilbert space (1012.4339v3)
Published 20 Dec 2010 in math.FA
Abstract: Let $X$ be a separable real Hilbert space. We show that for every Lipschitz function $f:X\rightarrow\mathbb{R}$, and for every $\epsilon>0$, there exists a Lipschitz, real analytic function $g:X\rightarrow\mathbb{R}$ such that $|f(x)-g(x)|\leq \epsilon$ and $\textrm{Lip}(g)\leq \textrm{Lip}(f)+\epsilon$.