Papers
Topics
Authors
Recent
Search
2000 character limit reached

Bit recycling for scaling random number generators

Published 20 Dec 2010 in cs.IT, math.IT, math.NA, and math.PR | (1012.4290v2)

Abstract: Many Random Number Generators (RNG) are available nowadays; they are divided in two categories, hardware RNG, that provide "true" random numbers, and algorithmic RNG, that generate pseudo random numbers (PRNG). Both types usually generate random numbers $(X_n)$ as independent uniform samples in a range $0,\cdots,2{b-1}$, with $b = 8, 16, 32$ or $b = 64$. In applications, it is instead sometimes desirable to draw random numbers as independent uniform samples $(Y_n)$ in a range $1, \cdots, M$, where moreover M may change between drawings. Transforming the sequence $(X_n)$ to $(Y_n)$ is sometimes known as scaling. We discuss different methods for scaling the RNG, both in term of mathematical efficiency and of computational speed.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.