Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches (1012.3623v1)

Published 16 Dec 2010 in q-bio.NC, cond-mat.dis-nn, and physics.bio-ph

Abstract: The repertoire of neural activity patterns that a cortical network can produce constrains the network's ability to transfer and process information. Here, we measured activity patterns obtained from multi-site local field potential (LFP) recordings in cortex cultures, urethane anesthetized rats, and awake macaque monkeys. First, we quantified the information capacity of the pattern repertoire of ongoing and stimulus-evoked activity using Shannon entropy. Next, we quantified the efficacy of information transmission between stimulus and response using mutual information. By systematically changing the ratio of excitation/inhibition (E/I) in vitro and in a network model, we discovered that both information capacity and information transmission are maximized at a particular intermediate E/I, at which ongoing activity emerges as neuronal avalanches. Next, we used our in vitro and model results to correctly predict in vivo information capacity and interactions between neuronal groups during ongoing activity. Close agreement between our experiments and model suggest that neuronal avalanches and peak information capacity arise due to criticality and are general properties of cortical networks with balanced E/I.

Summary

We haven't generated a summary for this paper yet.