Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

List-decoding of binary Goppa codes up to the binary Johnson bound (1012.3439v1)

Published 15 Dec 2010 in cs.IT and math.IT

Abstract: We study the list-decoding problem of alternant codes, with the notable case of classical Goppa codes. The major consideration here is to take into account the size of the alphabet, which shows great influence on the list-decoding radius. This amounts to compare the \emph{generic} Johnson bound to the \emph{$q$-ary} Johnson bound. This difference is important when $q$ is very small. Essentially, the most favourable case is $q=2$, for which the decoding radius is greatly improved, notably when the relative minimum distance gets close to 1/2. Even though the announced result, which is the list-decoding radius of binary Goppa codes, is new, it can be rather easily made up from previous sources (V. Guruswami, R. M. Roth and I. Tal, R .M. Roth), which may be a little bit unknown, and in which the case of binary Goppa codes has apparently not been thought at. Only D. J. Bernstein treats the case of binary Goppa codes in a preprint. References are given in the introduction. We propose an autonomous treatment and also a complexity analysis of the studied algorithm, which is quadratic in the blocklength $n$, when decoding at some distance of the relative maximum decoding radius, and in $O(n7)$ when reaching the maximum radius.

Citations (27)

Summary

We haven't generated a summary for this paper yet.