Papers
Topics
Authors
Recent
2000 character limit reached

An iterative construction of irreducible polynomials reducible modulo every prime

Published 13 Dec 2010 in math.NT | (1012.2857v4)

Abstract: We give a method of constructing polynomials of arbitrarily large degree irreducible over a global field F but reducible modulo every prime of F. The method consists of finding quadratic f in F[x] whose iterates have the desired property, and it depends on new criteria ensuring all iterates of f are irreducible. In particular when F is a number field in which the ideal (2) is not a square, we construct infinitely many families of quadratic f such that every iterate fn is irreducible over F, but fn is reducible modulo all primes of F for n at least 2. We also give an example for each n of a quadratic f with integer coefficients whose iterates are all irreducible over the rationals, whose (n-1)st iterate is irreducible modulo some primes, and whose nth iterate is reducible modulo all primes. From the perspective of Galois theory, this suggests that a well-known rigidity phenomenon for linear Galois representations does not exist for Galois representations obtained by polynomial iteration. Finally, we study the number of primes P for which a given quadratic f defined over a global field has fn irreducible modulo P for all n.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.