Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Three Dimensional Ising Model, Percolation Theory and Conformal Invariance (1012.1485v1)

Published 7 Dec 2010 in cond-mat.stat-mech

Abstract: The fractal structure and scaling properties of a 2d slice of the 3d Ising model is studied using Monte Carlo techniques. The percolation transition of geometric spin (GS) clusters is found to occur at the Curie point, reflecting the critical behavior of the 3d model. The fractal dimension and the winding angle statistics of the perimeter and external perimeter of the geometric spin clusters at the critical point suggest that, if conformally invariant in the scaling limit, they can be described by the theory of Schramm-Loewner evolution (SLE_\kappa) with diffusivity of \kappa=5 and 16/5, respectively, putting them in the same universality class as the interfaces in 2d tricritical Ising model. It is also found that the Fortuin-Kasteleyn (FK) clusters associated with the cross sections undergo a nontrivial percolation transition, in the same universality class as the ordinary 2d critical percolation.

Summary

We haven't generated a summary for this paper yet.