Papers
Topics
Authors
Recent
2000 character limit reached

The biHecke monoid of a finite Coxeter group and its representations

Published 6 Dec 2010 in math.CO | (1012.1361v3)

Abstract: For any finite Coxeter group W, we introduce two new objects: its cutting poset and its biHecke monoid. The cutting poset, constructed using a generalization of the notion of blocks in permutation matrices, almost forms a lattice on W. The construction of the biHecke monoid relies on the usual combinatorial model for the 0-Hecke algebra H_0(W), that is, for the symmetric group, the algebra (or monoid) generated by the elementary bubble sort operators. The authors previously introduced the Hecke group algebra, constructed as the algebra generated simultaneously by the bubble sort and antisort operators, and described its representation theory. In this paper, we consider instead the monoid generated by these operators. We prove that it admits |W| simple and projective modules. In order to construct the simple modules, we introduce for each w in W a combinatorial module T_w whose support is the interval [1,w]_R in right weak order. This module yields an algebra, whose representation theory generalizes that of the Hecke group algebra, with the combinatorics of descents replaced by that of blocks and of the cutting poset.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.