Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Order of Polynilpotent Multipliers of Some Nilpotent Products of Cyclic $p$-Groups (1011.5711v1)

Published 26 Nov 2010 in math.GR

Abstract: In this article we show that if ${\cal V}$ is the variety of polynilpotent groups of class row $(c_1,c_2,...,c_s),\ {\mathcal N}{c_1,c_2,...,c_s}$, and $G\cong{\bf {Z}}{p{\alpha_1}}\stackrel{n}{*}{\bf {Z}}{p{\alpha_2}}\stackrel{n}{}...\stackrel{n}{}{\bf{Z}}{p{\alpha_t} }$ is the $n$th nilpotent product of some cyclic $p$-groups, where $c_1\geq n$, $\alpha_1 \geq \alpha_2 \geq...\geq \alpha_t $ and $ (q,p)=1$ for all primes $q$ less than or equal to $n$, then $|{\mathcal N}{c_1,c_2,...,c_s}M(G)|=p{d_m}$ if and only if $G\cong{\bf {Z}}{p}\stackrel{n}{}{\bf {Z}}_{p}\stackrel{n}{}...\stackrel{n}{}{\bf{Z}}{p }$ ($m$-copies), where $m=\sum _{i=1}t \alpha_i$ and $d_m=\chi{c_s+1}(...(\chi_{c_2+1}(\sum_{j=1}n \chi_{c_1+j}(m)))...)$. Also, we extend the result to the multiple nilpotent product $G\cong{\bf {Z}}_{p{\alpha_1}}\stackrel{n_1}{}{\bf {Z}}{p{\alpha_2}}\stackrel{n_2}{*}...\stackrel{n{t-1}}{}{\bf{Z}}{p{\alpha_t} }$, where $c_1\geq n_1\geq...\geq n{t-1}$. Finally a similar result is given for the $c$-nilpotent multiplier of $G\cong{\bf {Z}}_{p{\alpha_1}}\stackrel{n}{}{\bf {Z}}{p{\alpha_2}}\stackrel{n}{}...\stackrel{n}{}{\bf{Z}}{p{\alpha_t}}$ with the different conditions $n \geq c$ and $ (q,p)=1$ for all primes $q$ less than or equal to $n+c.$

Summary

We haven't generated a summary for this paper yet.