Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Invariant tori for the cubic Szegö equation (1011.5479v1)

Published 24 Nov 2010 in math.CV and math.AP

Abstract: We continue the study of the following Hamiltonian equation on the Hardy space of the circle, $$i\partial _tu=\Pi(|u|2u)\ ,$$ where $\Pi $ denotes the Szeg\"o projector. This equation can be seen as a toy model for totally non dispersive evolution equations. In a previous work, we proved that this equation admits a Lax pair, and that it is completely integrable. In this paper, we construct the action-angle variables, which reduces the explicit resolution of the equation to a diagonalisation problem. As a consequence, we solve an inverse spectral problem for Hankel operators. Moreover, we establish the stability of the corresponding invariant tori. Furthermore, from the explicit formulae, we deduce the classification of orbitally stable and unstable traveling waves.

Summary

We haven't generated a summary for this paper yet.