Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Sample Complexity of Dictionary Learning (1011.5395v1)

Published 24 Nov 2010 in stat.ML and cs.LG

Abstract: A large set of signals can sometimes be described sparsely using a dictionary, that is, every element can be represented as a linear combination of few elements from the dictionary. Algorithms for various signal processing applications, including classification, denoising and signal separation, learn a dictionary from a set of signals to be represented. Can we expect that the representation found by such a dictionary for a previously unseen example from the same source will have L_2 error of the same magnitude as those for the given examples? We assume signals are generated from a fixed distribution, and study this questions from a statistical learning theory perspective. We develop generalization bounds on the quality of the learned dictionary for two types of constraints on the coefficient selection, as measured by the expected L_2 error in representation when the dictionary is used. For the case of l_1 regularized coefficient selection we provide a generalization bound of the order of O(sqrt(np log(m lambda)/m)), where n is the dimension, p is the number of elements in the dictionary, lambda is a bound on the l_1 norm of the coefficient vector and m is the number of samples, which complements existing results. For the case of representing a new signal as a combination of at most k dictionary elements, we provide a bound of the order O(sqrt(np log(m k)/m)) under an assumption on the level of orthogonality of the dictionary (low Babel function). We further show that this assumption holds for most dictionaries in high dimensions in a strong probabilistic sense. Our results further yield fast rates of order 1/m as opposed to 1/sqrt(m) using localized Rademacher complexity. We provide similar results in a general setting using kernels with weak smoothness requirements.

Citations (89)

Summary

We haven't generated a summary for this paper yet.