Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inferring Fundamental Value and Crash Nonlinearity from Bubble Calibration (1011.5343v1)

Published 24 Nov 2010 in q-fin.GN

Abstract: Identifying unambiguously the presence of a bubble in an asset price remains an unsolved problem in standard econometric and financial economic approaches. A large part of the problem is that the fundamental value of an asset is, in general, not directly observable and it is poorly constrained to calculate. Further, it is not possible to distinguish between an exponentially growing fundamental price and an exponentially growing bubble price. We present a series of new models based on the Johansen-Ledoit-Sornette (JLS) model, which is a flexible tool to detect bubbles and predict changes of regime in financial markets. Our new models identify the fundamental value of an asset price and crash nonlinearity from a bubble calibration. In addition to forecasting the time of the end of a bubble, the new models can also estimate the fundamental value and the crash nonlinearity. Besides, the crash nonlinearity obtained in the new models presents a new approach to possibly identify the dynamics of a crash after a bubble. We test the models using data from three historical bubbles ending in crashes from different markets. They are: the Hong Kong Hang Seng index 1997 crash, the S&P 500 index 1987 crash and the Shanghai Composite index 2009 crash. All results suggest that the new models perform very well in describing bubbles, forecasting their ending times and estimating fundamental value and the crash nonlinearity. The performance of the new models is tested under both the Gaussian and non-Gaussian residual assumption. Under the Gaussian residual assumption, nested hypotheses with the Wilks statistics are used and the p-values suggest that models with more parameters are necessary. Under non-Gaussian residual assumption, we use a bootstrap method to get type I and II errors of the hypotheses. All tests confirm that the generalized JLS models provide useful improvements over the standard JLS model.

Summary

We haven't generated a summary for this paper yet.