Plurisubharmonic and holomorphic functions relative to the plurifine topology
Abstract: A weak and a strong concept of plurifinely plurisubharmonic and plurifinely holomorphic functions are introduced. Strong will imply weak. The weak concept is studied further. A function f is weakly plurifinely plurisubharmonic if and only if f o h is finely subharmonic for all complex affine-linear maps h. As a consequence, the regularization in the plurifine topology of a pointwise supremum of such functions is weakly plurifinely plurisubharmonic, and it differs from the pointwise supremum at most on a pluripolar set. Weak plurifine plurisubharmonicity and weak plurifine holomorphy are preserved under composition with weakly plurifinely holomorphic maps.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.