2000 character limit reached
Supercongruences motivated by e (1011.3487v8)
Published 15 Nov 2010 in math.NT and math.CO
Abstract: In this paper we establish some new supercongruences motivated by the well-known fact $\lim_{n\to\infty}(1+1/n)n=e$. Let $p>3$ be a prime. We prove that $$\sum_{k=0}{p-1}\binom{-1/(p+1)}k{p+1}\equiv 0\ \pmod{p5}\ \ \ \mbox{and}\ \ \ \sum_{k=0}{p-1}\binom{1/(p-1)}k{p-1}\equiv \frac{2}{3}p4B_{p-3}\ \pmod{p5},$$ where $B_0,B_1,B_2,\ldots$ are Bernoulli numbers. We also show that for any $a\in\mathbb Z$ with $p\nmid a$ we have $$\sum_{k=1}{p-1}\frac1k\left(1+\frac ak\right)k\equiv -1\pmod{p}\ \ \ \mbox{and}\ \ \ \sum_{k=1}{p-1}\frac1{k2}\left(1+\frac ak\right)k\equiv 1+\frac 1{2a}\pmod{p}.$$