Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supercongruences motivated by e (1011.3487v8)

Published 15 Nov 2010 in math.NT and math.CO

Abstract: In this paper we establish some new supercongruences motivated by the well-known fact $\lim_{n\to\infty}(1+1/n)n=e$. Let $p>3$ be a prime. We prove that $$\sum_{k=0}{p-1}\binom{-1/(p+1)}k{p+1}\equiv 0\ \pmod{p5}\ \ \ \mbox{and}\ \ \ \sum_{k=0}{p-1}\binom{1/(p-1)}k{p-1}\equiv \frac{2}{3}p4B_{p-3}\ \pmod{p5},$$ where $B_0,B_1,B_2,\ldots$ are Bernoulli numbers. We also show that for any $a\in\mathbb Z$ with $p\nmid a$ we have $$\sum_{k=1}{p-1}\frac1k\left(1+\frac ak\right)k\equiv -1\pmod{p}\ \ \ \mbox{and}\ \ \ \sum_{k=1}{p-1}\frac1{k2}\left(1+\frac ak\right)k\equiv 1+\frac 1{2a}\pmod{p}.$$

Summary

We haven't generated a summary for this paper yet.