Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bernoulli Operator and Riemann's Zeta Function (1011.3352v7)

Published 15 Nov 2010 in math.NT and math.CV

Abstract: We introduce a Bernoulli operator,let $\mathbf{B}$ denote the operator symbol,for n=0,1,2,3,... let ${\mathbf{B}n}: = {B_n}$ (where ${B_n}$ are Bernoulli numbers,${B_0} = 1,B{}_1 = 1/2,{B_2} = 1/6,{B_3} = 0$...).We obtain some formulas for Riemann's Zeta function,Euler constant and a number-theoretic function relate to Bernoulli operator.For example,we show that [{\mathbf{B}{1 - s}} = \zeta (s)(s - 1),] [\gamma = - \log \mathbf{B},]where ${\gamma}$ is Euler constant.Moreover,we obtain an analogue of the Riemann Hypothesis (All zeros of the function $\xi (\mathbf{B} + s)$ lie on the imaginary axis).This hypothesis can be generalized to Dirichlet L-functions,Dedekind Zeta function,etc.In particular,we obtain an analogue of Hardy's theorem(The function $\xi (\mathbf{B} + s)$ has infinitely many zeros on the imaginary axis). \par In addition,we obtain a functional equation of $\log \Pi (\mathbf{B}s)$ and a functional equation of $\log \zeta (\mathbf{B} + s)$ by using Bernoulli operator.

Summary

We haven't generated a summary for this paper yet.