Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regularization Strategies and Empirical Bayesian Learning for MKL (1011.3090v2)

Published 13 Nov 2010 in stat.ML and cs.LG

Abstract: Multiple kernel learning (MKL), structured sparsity, and multi-task learning have recently received considerable attention. In this paper, we show how different MKL algorithms can be understood as applications of either regularization on the kernel weights or block-norm-based regularization, which is more common in structured sparsity and multi-task learning. We show that these two regularization strategies can be systematically mapped to each other through a concave conjugate operation. When the kernel-weight-based regularizer is separable into components, we can naturally consider a generative probabilistic model behind MKL. Based on this model, we propose learning algorithms for the kernel weights through the maximization of marginal likelihood. We show through numerical experiments that $\ell_2$-norm MKL and Elastic-net MKL achieve comparable accuracy to uniform kernel combination. Although uniform kernel combination might be preferable from its simplicity, $\ell_2$-norm MKL and Elastic-net MKL can learn the usefulness of the information sources represented as kernels. In particular, Elastic-net MKL achieves sparsity in the kernel weights.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ryota Tomioka (33 papers)
  2. Taiji Suzuki (119 papers)
Citations (15)

Summary

We haven't generated a summary for this paper yet.