Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Symbolic Summation Approach to Feynman Integral Calculus (1011.2656v2)

Published 11 Nov 2010 in cs.SC, hep-ph, hep-th, math-ph, and math.MP

Abstract: Given a Feynman parameter integral, depending on a single discrete variable $N$ and a real parameter $\epsilon$, we discuss a new algorithmic framework to compute the first coefficients of its Laurent series expansion in $\epsilon$. In a first step, the integrals are expressed by hypergeometric multi-sums by means of symbolic transformations. Given this sum format, we develop new summation tools to extract the first coefficients of its series expansion whenever they are expressible in terms of indefinite nested product-sum expressions. In particular, we enhance the known multi-sum algorithms to derive recurrences for sums with complicated boundary conditions, and we present new algorithms to find formal Laurent series solutions of a given recurrence relation.

Citations (52)

Summary

We haven't generated a summary for this paper yet.