Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From the Schrödinger problem to the Monge-Kantorovich problem (1011.2564v1)

Published 11 Nov 2010 in math.OC and math.PR

Abstract: The aim of this article is to show that the Monge-Kantorovich problem is the limit of a sequence of entropy minimization problems when a fluctuation parameter tends down to zero. We prove the convergence of the entropic values to the optimal transport cost as the fluctuations decrease to zero, and we also show that the limit points of the entropic minimizers are optimal transport plans. We investigate the dynamic versions of these problems by considering random paths and describe the connections between the dynamic and static problems. The proofs are essentially based on convex and functional analysis. We also need specific properties of Gamma-convergence which we didn't find in the literature. Hence we prove these Gamma-convergence results which are interesting in their own right.

Summary

We haven't generated a summary for this paper yet.