Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conjugacy classes in Weyl groups and q-W algebras (1011.2431v4)

Published 10 Nov 2010 in math.RT, hep-th, and math.QA

Abstract: We define noncommutative deformations $W_qs(G)$ of algebras of functions on certain (finite coverings of) transversal slices to the set of conjugacy classes in an algebraic group $G$ which play the role of Slodowy slices in algebraic group theory. The algebras $W_qs(G)$ called q-W algebras are labeled by (conjugacy classes of) elements $s$ of the Weyl group of $G$. The algebra $W_qs(G)$ is a quantization of a Poisson structure defined on the corresponding transversal slice in $G$ with the help of Poisson reduction of a Poisson bracket associated to a Poisson-Lie group $G*$ dual to a quasitriangular Poisson-Lie group. The algebras $W_qs(G)$ can be regarded as quantum group counterparts of W-algebras. However, in general they are not deformations of the usual W-algebras.

Summary

We haven't generated a summary for this paper yet.